Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli.
نویسندگان
چکیده
Here, we analyse Escherichia coli enzymes involved in small molecule metabolism (SMM). We introduce the concept of pathway distance as a measure of the number of distinct metabolic steps separating two SMM enzymes, and we consider protein homology (as determined by assigning enzymes to structural and sequence families) and gene interval (the number of genes separating two genes on the E. coli chromosome). The relationships between these three contexts (pathway distance, homology and chromosomal localisation) is investigated extensively. We make use of these relationships to suggest possible SMM evolution mechanisms. Homology between enzyme pairs close in the SMM was higher than expected by chance but was still rare. When observed, homologues usually conserved their reaction mechanism and/or co-factor binding rather than shared substrate binding. The correlation between pathway distance and gene intervals was clear. Enzymes catalysing nearby SMM reactions were usually encoded by genes close by on the E. coli chromosome. We found many co-regulated blocks of three to four genes (usually non-homologous) encoding enzymes occurring within four metabolic steps of one another; nearly all of these blocks formed part of known or predicted operons. The "inline reuse" of enzymes (i.e. the use of the same enzyme to catalyse two or more different steps of a metabolic pathway) is also discussed: of these enzymes, four were multifunctional (i.e. catalysed a different reaction in each instance), nine had multiple substrate specificity (i.e. catalysed the same reaction on different substrates in each instance) and one catalysed the same reaction on the same substrate but as part of two different complexes. We also identified 59 sets of isozymic proteins most commonly duplicated to function under different conditions, or with a different preferred substrate or minor substrate. In addition to transcriptional units, isozymes and inline reuse of enzymes provide mechanisms for controlling the SMM network. Our data suggest that several pathway evolution mechanisms may occur in concert, although chemistry-driven duplication/recruitment is favoured. SMM exploits regulatory strategies involving chromosomal location, isozymes and the reuse of enzymes.
منابع مشابه
Analysis of metabolic networks using a pathway distance metric through linear programming.
The solution of the shortest path problem in biochemical systems constitutes an important step for studies of their evolution. In this paper, a linear programming (LP) algorithm for calculating minimal pathway distances in metabolic networks is studied. Minimal pathway distances are identified as the smallest number of metabolic steps separating two enzymes in metabolic pathways. The algorithm ...
متن کاملComparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae.
The comparison of the small molecule metabolism pathways in Escherichia coli and Saccharomyces cerevisiae (yeast) shows that 271 enzymes are common to both organisms. These common enzymes involve 384 gene products in E. coli and 390 in yeast, which are between one half and two thirds of the gene products of small molecule metabolism in E. coli and yeast, respectively. The arrangement and family...
متن کاملEvaluation of Prevalence, Homology and Immunogenicity of Dispersin among Enteroaggregative Escherichia coli Isolates from Iran
Background: Diarrhea, caused by enteroaggregative Escherichia coli (EAEC), is an important cause of illness and death. Numerous virulent factors have been described in EAEC. However, their prevalence was highly variable among EAECs of distinct geographic locations. Studies have shown that dispersin (antiaggregation protein, aap) is one of the important and abundant virulent factors in EAEC. In ...
متن کاملEffect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains
CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...
متن کاملExpression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus
Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 318 3 شماره
صفحات -
تاریخ انتشار 2002